Use Case Study

18/June/2004

Bill Tanenbaum US-CMS/Fermilab

Outline

- Introduction to DST's and Reconstructed Objects
- Restatement of Use Case
- "Solution" of Use Case

Stages of CMS Production

SimHits (Simulation)

Produced by OSCAR (using GEANT4) OR reformatted from Zebra file (GEANT3) by ORCA (writeHits)

Digis (Digitization)

Produced by ORCA (writeAllDigis) from SimHits

DST (Reconstruction)

- Produced by ORCA (writeDST) from Digis
- About 50 reconstruction algorithms for various types of objects (e.g. tracks, vertices, Jets, etc.)
- Reconstructed analysis objects stored in collections.

Analysis

□ Not (yet?) part of production process

Reconstructed Objects

- Stored persistently in DST
- Each object type must inherit from RecObj
 - Provides persistency capability
- Objects are hierarchical
 - Higher level objects are constructed from lower level objects
 - Examples: Jets are reconstructed from Tracks, Vertices are reconstructed from Tracks, etc.
 - At the lowest level, all objects inherit from raw data (Digis)

Collections of Analysis Objects

Defined by:

- Type of object (e.g. Track, Vertex, Jet)
- Name of algorithm (must be unique)
- Version of algorithm
- Parameter Set
 - Data independent parameters
 - Does not include parameters of components
- Component Set
 - Dependencies on other (lower level) objects
- Calibration Set
 - Data dependent parameters

All these define the RecConfig

The same RecConfig gives reproducible results

Collections (cont.)

- One (documented) interface for retrieving collections
 - RecCollection
- Used to iterate over homogeneous collections
 - For analysis or for reconstructing higher level objects
- Collections are homogeneous
 - Within an event
 - For all events, reproducibly
- Reconstruction is expensive
 - Do it only on demand
 - Cache results
 - Make persistent if desired

RecQuery

User friendly way to define RecConfig

- Only the algorithm name is required
 - Everything else is taken from (algorithm specific) default configuration
 - Only the parameters, components, or calibrations that need to be changed need be specified
 - Parameters can be specified in query itself or in .orcarc.
 - Query arguments override the .orcarc settings, which override defaults.
- Errors (e.g. undefined algorithm name, parameter name, etc.) found only at runtime (exception will be thrown)

More information about Reconstructed Objects

- See Norbert Neumeister's DST tutorial
- Norbert's tutorial shows how to define algorithms, parameter sets, etc.

Restatement of Use Case

Actor: Physicist

Goal: As part of debugging an algorithm, print some parameters of each reconstructed track found by a specific algorithm.

Trigger: My code has activated by the presence of a new event that needs my attention.

In the current event, I will ask for all those tracks found by algorithm named X version n, with completely unique and unambiguous configuration Y. There must be either 0 or 1 collections of tracks associated with this run of the algorithm.

If this version of this algorithm has not previously been run with this configuration, I will print a message saying it has not been run.

If this algorithm has been run, I will iterate through all those tracks, printing to standard output the transverse momentum of the track.

Caveats on "Solution"

Selection of Algorithm version

- Currently, the DST's have only one version of each algorithm
- So, specifying the version is optional. It defaults to the correct version
- Bug (?) found: The algorithm version is effectively ignored on query. I fixed the bug so that the version is checked. This fix (more or less) should become official, pending approval of the owners of the code.
- Since there is only one version defined, specifying a different version (with the fix in place) causes a run time exception because of a non-existent version of the algorithm. Arguably, this is proper behavior.

Selection of Configuration

June 18, 2004

- Includes Parameter Set, Component Set, and Calibration Set
- Currently, a given DST use only one configuration for each algorithm
- So the default can be used. I did, for simplicity.

The configuration is properly checked for a match.

Caveats on "Solution" (cont.)

Selection of Event

- I didn't bother to trigger on one specific event. For simplicity, the printout is triggered for every event.
- It's simple to add the event selection criteria of your choice.

Skipping an event that did not use the chosen algorithm

- Not currently supported by the documented interface, as far as I can tell
- Reconstruction on demand (see later) will cause the query to be done.
- Need an enhancement to enable this.
- I will request it, if it is not already there.

Comments on the Solution

Most of code is standard "template" code

- Only the analysis() method is specific to this use case. It is automatically called once per event by the framework.
- However, it is important to write the BuildFile so that the correct shared libraries are specified.
- Solution similar to existing ExDSTStatistics program.

The collection is initialized only once, at beginning of run

- The collection is a lazy observer of dispatched events.
- When the collection is accessed, it automatically updates itself from the new event if a new event has been dispatched since the previous access. The objects from the previous event, if any, are first cleared.
- The configuration is guaranteed consistent across events.
- If the collection is not accessed for a particular event, it is never updated for that event (reconstruction on demand).

The Guts of the Solution

```
void UseCase::analysis(G3EventProxy* ev) {
 if (theTkCollection == 0) {
  theTkCollection = new RecCollection<TTrack>(RecQuery("CombinatorialTrackFinder", "0.0"));
\} // Note: configuration arguments are defaulted. Version ("0.0") could also be defaulted.
cout << "Found " << theTkCollection->size() << " Tracker tracks." << endl;
GlobalVector p;
for(RecCollection<TTrack>::const_iterator it=theTkCollection->begin();
 it!=theTkCollection->end(); it++) {
  p = (*it)->momentumAtVertex();
  cout << "p=" << setw(8) << setprecision(3) << p.mag() // total momentum
  << "GeV, pt=" << setw(8) << setprecision(4) << p.perp() // transverse momentum
  << "GeV, theta=" << setw(8) << setprecision(4) << p.theta() // theta of momentum
  << " rad, phi=" << setw(8) << setprecision(4) << p.phi() // phi of momentum
  << " rad, eta=" << setw(8) << setprecision(4) << p.eta() << endl; // pseudorapidity</pre>
```


June 18, 2004

12